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Fast Adaptive Super-Exponential Multistage
Beamforming for Cellular Base-Station
Transceivers with Antenna Arrays

Massimiliano (Max) MartoneMember, IEEE

Abstract—A new blind adaptive beamforming algorithm is basically very simple to implement, appeared to suffer from
introduced. We show how cumulants of the received signals can two main disadvantages: misconvergence and slow adaption
be used to obtain the weights of the beamformer that perform rate. The application of a class of algorithms that exploit

blind extraction. The method is based on a spatial interpretation . . . h
of a deconvolution procedure known as the super-exponential second-order cyclostationary properties of the received signals

algorithm. The basic block processing algorithm is attractive t0 separate the signal of interest from interferers was first
because it can be transformed in an efficient adaptive algorithm presented in [17] motivated by the fact that many signals
i v oo a3 W e cormmianony T communications are cycostationary [4]. It is mporan
scenario V\;here several cochanneI)/ipnteferers corrupt the signals also to mention the rece_nt Contrlbutlo_n_of [1_8]' where a
of interest. method based on a gradient-based minimization of a new
cost function was presented. The basic idea of that work is
to exploit the property of cyclostationary signals to generate
spectral lines when they pass through certain nonlinearities.
Cumulant-based methods were presented in [6] to solve the
. INTRODUCTION blind beamforming problem, but no attempt was made to
HE USE OF antenna arrays in a communication syste(ﬂ@l‘ive real-time adaptive algorithms. In [7], some cumulant-
can theoretically improve performance in terms of cdased methods were also introduced to show the advantages
pacity. Particularly, a multielement antenna receiver at tleonsequent to the use of higher order statistics. The method
base station of a cellular communication system is able pooposed in this work is based on the same idea introduced
compensate signal degradations in the mobile-to-base limk[1] and [2], where the super-exponential approach [3] was
caused by cochannel interference which is known to be tgeneralized to the multivariate case. Here, we describe the
most important factor limiting the number of users that application of the method to the space-only case and present
system can handle. The traditional beamforming approaahmultistage implementation based on the architecture of [14].
requires the knowledge of a “look” direction (the directiomhe advantages of the proposed method are in the following
of arrival of the signal of interest) or the waveform of thdacts.
signal of interest itself which is obviously not available in . The approach is blind which allows the use of arbi-
the cellular environment. Several alternative solutions have trary array geometry and applicability in any propagation
been proposed to solve the problem. The application of high-  anvironment.
resolution array processing methods is not possible due ta |1 goes not exhibit the typical problems of blind ap-

the extremely high number of wavefronts impinging over proaches to beamforming, in fact, it has the property of
the array: the model is not identifiable. However, the ap- being globally convergent.

plication of subspace methods was proposed in [9], where,
the propagation model was considerably simplified assuming
a local scattering mechanism. Blind adaptive beamforming
methods appear to be more successful because no knowledgepoim of view, proving that the use of higher order
about array configuration, look direction, or desired signal is statistics does not necessarily imply slow convergence
required. The most popular approach to blind beamforming is and, hence, extremely large sample size.
the constant modulus algorithm (CMA) array [12], [13], WhichCL ’ ’

i

Index Terms—Array signal processing, higher order statistics,
interference suppression, land mobile radio cellular systems.

The adaptive algorithm is sufficiently fast to track channel
variations caused by moving transmitters, while at the
same time being highly attractive from the computational

represents the extension of the Godard blind equalizat He Paper 1s _organlzed as follows. In Se_ct|0_n Il, we describe
idhe discrete-time model for the communication system under

analysis. In Section Ill, we describe the beamforming archi-
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idea [16] to space filtering. The CMA method, which
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pany, Gaithersburg, MD 20878-1794 USA. results of some simulations for [21], [22], the curren
Publisher Item Identifier S 0018-9545(99)05734-5. cellular system are shown.

0018-9545/99$10.001 1999 IEEE



1018 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 48, NO. 4, JULY 1999

LO in :
Calibration
>->{>

) LPF o
Flronem [ AR 3
LPF ';:'
4 S N @
F FRONT END LPF 2
R =
—» AD [
(TUNER) LPF L o
: : : 3
R SN
: 2
Y— . LPF > ©
RF FRONT END L n
(TUNER) > AD LPF §
A A A : Y Y
Y 4
SYNTHESIZER » NCO. |«—Pp{ CONTROLLER
Fig. 1. Block diagram of the receiver.
II. SYSTEM MODEL narrow-band assumption does not hold. Sampliny & rate,
We assume/ mobile transmitters communicating with aV€ ¢&n compact this expression as
base station with & -element antenna, witlf < K. A block U
diagram of the receiver is depicted in Fig. 1. The complex (1) =u(t) = > hieam(t) + m(t),
baseband-modulated signal transmitted by lthetransmitter 1=1
is z;(t"). We use the notatior(¢’) to denote a continuous time k=1,2,--- K (2

waveform, while we will denote(t) as the discrete-time signal

obtained by sampling at equispaced instants. Due to radi§erehs, is theT;-sampled response of the array combined
frequency (RF) multipath propagation (we will consider on|yJith the channel of théth transmitted signal as seen at the
the short-term fading which obeys a Rayleigh distribution), tHgh sensor of the antenna array.

signal received at thkth sensor of the array can be modeled as

I1l. DESCRIPTION OF THEMULTISTAGE ARCHITECTURE

U ]\rl
. — It m The concept of multistage separation is similar to the idea
Tk t = oL, & e ay, 917 X7 t + Mk t/ (1) . - >
) ; Z*l " Bm)a() ®) described in [14]. In this work, we use a new procedure to

h N, is th b N h lati h . 1Observe that a beamforming method based on a high-resolution direction-
where V; Is the number of paths relative to the Scatte”ngnding approach requireR” > 2};1 N; sensors according to the model (1).

model of thelth transmitter,p; ,, is a Rayleigh-distributed An accurate knowledge of the array geometry and the ability to resolve the
random variablez/;l m IS uniformly distributed over[O 27r] wavefronts are also necessary. In [9], a reduced number of dominant paths
M ’ ’

P is th K . d ph f was considered based on some geometrical assumptions. The blind approach
ak( lml) IS the unknown gain and phase response o Hthe overcomes the multipath modeling problem and requires only fewer sources

sensor in the angle of arrivé ,,, andn, (') is the noise at (interferers) than sensors (motivated by a fundamental multivariable system
the kth sensor. It is important to observe that the applicatidfeory limit). This assumption appears very reasonable since generally the

. h . . . L requency reuse planning of a cellular system is such that at a certain given
of the algor'thm described in the fOIIOW'ng is not limited tc&ime a small number of cochannel interferers has high enough power to
any array configuration, and it can be applied also when the&grade quality of service.
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extract signals at every stage and show how, as a byprodggg g,:z(m) =H,( HZ H,)f s 5(/’")7 where we have used the

of the super-exponential method, we can eliminate the LM§ymboi + to identify the inversion of a rank-deficient square
search for the canceller weights of [14]. At eaclth stage, matrix by, for example, singular value decomposition (SVD).
we have to separate one of thg, signals (thei,,th signal, Observe that this solution is exactly the optimum Wiener filter
wherei,, € [1,U,]) using aK-element spatial filter (observein presence of noise (up to a constant). In fact, the Wiener

thatlU; = U andUy,41 = U, —1). Generally, the permutation splution obtained minimizing the MSE is
uncertainty inherent to the blind separation problem [8] causes

the indexi,,, to be unknowra priori. We use aro-noisemodel ;. = E{g (g™ )V B (k) s, ()} (6)
for the derivation of the algorithm. Defingl(m)(t),wf:), _ _ _ _

Zi(m)(t) forl =1,2,---,K andi,, = 1,2---,0,, as inputs, Expression (S) is eqlﬂl\I/{a[ent to (5 given that
weights, and outputs of theuth (beamformer) stage, respecE{#" (k)5™" (k)} = 02H,, Hy, + Iy with []1n =
tively. Every stage has to solve a separation problem withz{n™ (k)™ (k)} and E{g™ (k)*z;,, (k)} = o2H 0.

K x U,, mixing matrix, by extracting one of the sources. Thepm(Lm)(k) is the additive noise at the:ith stage, which was

the contribution of the extracted signal to the array input |geglected in the derivation of (5) so th&Y, = 0]
subtracted and a new separation problem With— 1 sources
is solved.

The output of the beamformer at theth stage iSzi(::) (t) =
SE L w™y ™ (#) for iy, € [1,U,,], wherew!™) is the ith T . -
weight corresponding to theth (stage) spatial filter designed®d ¥ = [v1,v2, -, ug]" is @ collection of deterministic

to separate thé,, source. The overall input/output relation oﬁ/arlables, then thé(th-order cumulant is defined as tth

the system including channel effects, array response, and sp%% fficient in the Mac—Laurin series expansion of the cumulant

filter at themth stage, but not including the additive noise igeneratmg function
A () = Sk st (), wherest™) = NI w{™aY Ko (v) = InE{cV" @Y. 7)
for 4,, € [1,U,] (observe tha'rhSI) = h;y) or in a vector

A. Cumulants of Stationary Processes
If £ = [x1,22,--+,2x]" is a collection of random variables

form?2 Alternatively [11], one can defind(th-order cumulants as
R combinations of joint moments of orders up&b Particularly
5513) =H mﬁ:EZ’) (3) for zero-mean random variables ahfl= 2,3,4
where H,,, E;EZ"), and 1115:’) are defined as cum [wg*)ﬁé*)] IE{xg*)xé*)}

cum [217, 287, 257] = B{a (V{27

-Elm 1k :h(m) * * * * * * *) (%
ol =l eun b7, 287,87, 2{") = {0}

~(m) _r (m) (m) (m) (m) 1T

S; =15 > 54 S TS U * * * *

~z:1,) [ Z&]r‘n,) 72(771, ’ (rn,)7b7;] - E{‘/Eg )‘/Eé )}E{.’Eé )‘/L.A(L )}

w; = [wim,p Wi 27T wim,K] . . E{xg*)xg*)}E{xé*)xi*)}
The desired response éf:) (that is the response that — E{aa B{al ey

separates the,,th source) can be expressed é,gn) = ) ) )
™ where ;"' is an eventual complex conjugation fag. In

81560, 2,60 3.0+, 6 v, ]F, where ; i :
i1 8120 B8 Gie 0] this work the random variables are samples collected at time
0, i £k n1, from the sensor outputs of an array. These collections
Bi e = 1, i = k. of samples are modeled as stationary random processes. The

fundamental properties of cumulants of random zero-mean
It is possible to solve the problem of finding the beamformetationary processes are as follows.

wEZ’) that approximates the desired response solving the. ||N: cum [; fiz;(n),- -] = oificum [%; z:(n), - -, ].
minimization problem + STATIND: if the samples of a process can be divided into
. . two (or more) statistically independent subsets, then their
. ~ (m) (m) 2 ..
min ||Hnw;, * —6;, || 4) joint cumulants are zero.
i ¢ GAUSS: if the samples of a process are jointly Gaussian,

then their joint K cumulant is zero forK greater than
two.

(5) When the samples are well separated in time and if the cumu-
lants are absolutely summable, then the theoretical cumulants

t M anCt‘vH: M andgl a anfliM i af!dv*tden?tetzomnqﬁx Coc?iugattion are consistently estimated from a data record&/afamples and

ranspose, transpose, and complex conjugation for the riana vector . e

v, respectively. Thé:, I element of the matri®M and themth element of the e_nsemble aV_G_rages can be approximated by emp!ncal averages,

vectorv are[M], ; and[v]..., respectively. Complex conjugation for a scalaSimply exploiting the cumulant to moment equations.

M vector. gorithm is as follows.

The solution of (4) is

@ = (H,,H,) H,p8, "
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e AS1: The complex zero-mean discrete-time processds above assumptions and the properties of the cumulants of
{z,(t)}, for n = 1,2,---,U, are constituted by randomlinear stationary processes (see [11]) so that we can write
variables identically non-Gaussian distributed. In addition, the

cumulants of{z,(¢)} satisfy: cum [y; " )( )Jlgn) (n)]
1) cum[zx(t), 27 (t)] = 02 > 0, only for [ = k; o U ..
2) cumfwn, (t), @k, (1), @0, (1), 25, ()] = 74z # 0, Only for =cum| Y B (n), Y B, g, (n)
Ny = N2 = N3 = N4. h=l1 lo=1
(m) *
IV. EXTRACTION OF THE %,, SIGNAL (mTH STAGE) Z hi (14)
In this section, we will show how to obtain an estimate oé ¢
the optimal solution for the weights of the beamformer ang'€ 0
at the same time the propagation vector for fhgh signal. cum [z, (k), z, (k)]
The following two-step iterative procedure defines a class of cum [zi(n), zf(n)] = 02, 1 =1
algorithms for different values qf andg (p+¢ > 2) [1], [3]: = { 0, ’ otherwise.
Stepl = s("’? (s 5::?1) (s 5::7)1 ) (8) To derive the second key expression related to (11), let us
(m) S 1 consider
Step2 = s; — 9)

Zm:

cum [ <"'><k> 2 (), 2 (), g ()

’ Zm ’ Zm 1 iz

= Zh;;,l cum[z{"™ (), 2" (k), 2" (k) =} (k)]
Choosingp = 2, ¢ = 1 gives a solution in terms of fourth- =1
and second-order cumulants. As observed in [3], (8) and (9) (15)

operated orf;(m) converges at auper-exponential ratéo the

and

desired solutions;, . Since obviouslyégzl) is not available (m () m)* 1,
(becauseH.,,, is not known), we derive a procedure in terms of cum [z s ( )% (/%)7 z 0 (k), %7 (F)]

(rn) If we deflneg(m) [97(:17)1797(:7)2797(:)37 791(::7)11 ]T Ym  Um (rn) (rn) (rn)¢
as the vector obtained ty{m) (:))2 (m) , We can state - Z Z Bttt B 1z i s
the least squares minimization problem b=l =1 =1

o _ g x cum [ay, (k), 1, (K), 2y, (F), 7 (k)]
bl (10 =3 5) = gl (16)

im.

with the solution where the last equality follows from

~("l) (H H ) Hrlrfr ("l). (ll) cum [‘Th (71),1’12(71),1'73(71)71'7(71)]
. . . . _ Yz, 1121221321
To obtain normalization (9), the second step is 10, otherwise.
) _ "™ So we can write
w,,, T ' (12) 0 (1), 2 (1), 2007 (),
Ve cum (=7 (1), 27 (), 20 (), 02" ()
The algorithm in thap; . domain [see (11) and (12pfojected _ Z RGO g(m),y (17)
back in thes; domain becomes LG
5™ E ions (14) and (17) can be substituted in (11), and the
(m) L CONN ORI xpressions (. ) an _ : U :
Si. = H, (H H.,) H,.g Yi.  Sin, E (m)H (13) following iterative algorithm is obtained:
whose point of convergence easily obtained (see [3]) is Step1 = w N(m) s D(:) (18)
- (m)
~ ~ H ~ H~(m 3
Loy Ho(H H ) L Step2 =™ = Vi (19)
T A

This expression is coincident with the solution (5) up to where the generi¢,/ element of theX” x K matrix B is

gain factor. In Appendix A, we further explain the supergiven by
exponential algorithm and the related convergence issues. (m) 1n () g

The procedure [see (11) and (12)] can be expressed in terms R, = cumfy, " (k),y; " (K)]
of the cumulants of the outputs of the sensors. We exploit ’ o3

(20)
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and thelth element of thei{ x 1 vectorDEm) of fourth-order TABLE |
cumulants is given by " THE PROPOSED ALGORITHM
(m) k (m) k (m)* k (m)* k . .
[D(m)] o Culn[ ( )7 Zim ( ) Zim ( )791 ( )] (21) + Time update recursions:
e o | LA = Sl - 040

[(m) ) = A (m) (m)?
Now if we take into account the additive nois&™ (k), > “n (V=M (o Dbz

. for for m = 1,2, ..., U initialize P(’”)(ku)

we have 400 = |- o 20] () - B, ()2, ()
(m) (m) _ N(m)' 3
~(m) 1 ~ H ~ - 4. D (n) = AD; “(n—1)+y (”)Zi,,, (n)/vas
R :_[ H Hm +Fm] (22) ™) (g — 139 (™) ()5 (T (g
o2 5 p(m (B) = A1 PO —1) + PO (k=15 " )y " ()P e—1)
z o i A+y (T (k) P (k=1)F (™* (k)
5 6. KM (k P (R (™) (k
and D(m) o~ Hm Em) because )( )= ( )( § k) ) .
7w (k) = Wi (= 1)+ KOk [ (6 — 507 () w (G — 1)
*
Cqu[ (m)(k)v z(::)(k)v z(::) (k),yg") (k)] + Stage update recursions:
1. 5’,(m+1)(”) :)—,(m)( ) — D(m) (n)z (m)( )
_Z B gl o
ol VAT ¢ Initialization:
(m) ( ) ( y 1. fori=1,2,...,K: for m=1,2, ..., U initialize wl( )l( ko)
m m m
+ Z Z Z Wity Wiy, 1o Wi 15 2. for m = 1,2, ..., U initialize D1<-m>(/(',(])

[T - I £
3
4

x Cum[m( V&), (k)™ (), T (k)]

_Z h(m) (m)ﬂ@g (23)

fori=1,2 K f (ko) = yilko),
5. form=12,..U:
27 (ko) = 2L w7 (ko)™ (o),
= "™ (ko) = ™ (ko) — D (ko) 277 (ko),
In fact, n(m)( k) is a Gaussian process and its cumulants

of an order greater than two vanish. So if the iterative
algorithm converges close to the desired response so thhe estimate ofR"” D(m) ~(m) based onk samples is

9;,, = coust §;_, then we have R (k), D{™(k), ~EZ’)( ), and their recursive estimation
can be obtained as

m ~ H ~ ~ ~ H “
@™ ~ 52 [02H o H,p, + ] H, const 8,

~(m)”* ~(rn)T
- (m) (m) g (D™ (k)
which is exactly the optimal Wiener solution given in (6). R (k) = AR (k= 1) + o2 (27)
~(m)* ~(m)
m m y (k)zz (k)
V. ADAPTIVE IMPLEMENTATION ng)(k) = )\ng)(k -1+ Tm (28)

In this section, we derive an adaptive algorithm for onj,
line computation of the spatial filter weights. The derivation is ) (1 )y o (m) (| T
based on the theory of recursive least squares (RLS). Sampl¢/ (k) =lyr " (B)y g0 (B), - e (F))]
statistics-based estimation of the cumulants of interest are jZ(Z‘)(/f) (|7<m)( )2 = 202)z <m>( Y= Bi (n)zr (n)

BV (k) = ABI (k= 1) + 2 (k).

here

cummfy;(n); v (n)] = & Z yi(n)yl(n (24)
A is the forgetting factor The processﬁi(zl)(t) is the
cutmnlz;(n); 2i(n); 2 (n )7.%( n)] recursive estimation ofE{zSZ”)z(k)}. Expression (28) can
1 X be justified by considering the estimation of fourth-order
- N Z n)z(t) cumulants, based on sample averages given by (25) and the
. N statistical assumptions on the proces&:). Due to the power
Z Z T normalization E{|z™(k)2} = E{ U2 (1))
—t —t ’ ¥, |s§:?j|2E{aZ,m( Joi (k)} = o2. Since we need the
N N inverse of the correlation matrix at every step, we can use
Z Z (n) (25) the matrix inverse identify and write the equation given at the

bottom of the next page, witl?™ (k) = (R(m)(k))*l. The
We have neglected stage indexes#gft), zi(¢) for simplicity Kalman gain is given byk ™ (k) = P (k)™ (), and
and have indicated the estimated cumulantwas][-]. At the the recursive updating of the deconvolution filter is calculated
end of the convergence process, the following equation m@t
be satisfied: 1115:)(/%‘ +1) = (m)( ) + K™(k)

D™ — R™@{™ = o. (26) ) =g (R + D)™ (). (29)
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Fig. 2. Discrete-time model of the filtering sectiof (sensors up to thenth stage).

The initialization can be made by estimating cumulants usimg solutions can be employed to avoid this problem. We
sample averages on a small number of data samples; the mave studied and simulated a square root (QR decomposition)
malization required by the general method can be implementggbroach similar to the method proposed in [10], [19], and
by scaling the value of the weights obtained at each iteratid@0]. The algorithm is described in Appendix B.

Sincezgff)(k) "% g, (k) (where™3” stands for “con-

verges in the mean-square sense”) antiiag_. ., @EZ’)(k) =

C@EZ’) (for some scalar), it follows as a byproduct of the VI. SIMULATIONS
iterative-recursive procedure that As an example of application of the algorithm, we simulated
. (m) | = H (m) the AMPS cellular system environment [21], [22]. A base
kIEEO D, (k) =C'H,$8;, station equipped with & = 10 element uniform linear array

with half-wavelength element spacing is considered. There are
UV = 4 signals impinging over the array with equal power
to represent a rather pessimistic interference scenario. The
number of rays in (1) to generate the fading channels is
N1 = Ny = N3 = N, = 25, while the transmitters’ angles of
arrival in the case of static channel are clustered for each path
g (k) = 50 (k) — DS:)*(k)igzl)(k)- around 60, 10°, —25°, and 30, respectively, as described in

[9] with 8w = 3°. The signals are assumed to be received
The algorithm can be summarized as in Table | (see aladth equal strength. Carrier separation is 0 Hz for the RF-
Fig. 2). The lagk, can be selected arbitrarily, depending on thenodulated signals. The sampling frequency is 80 KHz. White
initialization strategy. It is well known that the updating of th&Gaussian noise afflicts all the signals impinging over the array
matrix P (k) can become numerically unstable. A numbewith equal power.

=C [ﬁgr,rzly),: ) ilg,rzl,),: P il(l?;),;]T
That is, the vectorDEZ”)(k) contains the information rela-
tive to the 7,,th-directional vector up to a scala®’. As a
consequence, the stage update recursion is given by

PO (k)™ (k+ D™ (k + )P (k)

PO (k+1) = A7 [P (k) + -
(E+1) (®) A+ g7 (k4 1)PO By (k + 1)
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Fig. 3. Beam pattern of the first three stages: DOA’s are= 60°, 6, = 10°, 83 = —25°, and 84 = 30°. (a) The first stage captures;

and forms nulls in the directiongz, #;, and #3. (b) The second stage capturés and forms nulls in the direction8z and ¢;. (c) The third stage
capturesfs and forms a null in the directior .

The fading channel is static in a first set of simulation expeand the expectation is calculated by averaging over 100
iments and it is generated randomly at every run accordingitmlependent runs. The weight updating algorithm is the QR
the Rayleigh distribution. In Fig. 3, the beam pattern is showecursive algorithm described in the Appendix with= 0.855.
for the four stages after 1000 samples, wkh= 0.99, with Fig. 5 shows a comparison in terms of MSE of the first
a signal-to-noise ratio (SNR} 30 dB. In Fig. 4, the mean- three captured sources (among the four of interest) with the
squared error (MSE) of the four sources MSEISE;, MSE;,  multistage CMA array of [14]. The value of is 0.97.
and MSE, is reported versus the number of samples processedrhe output-signal-to-interference-plus-noise ratio is defined

where as
2

10
OSNIR,,, = ES |37 i w(™ 2 (k)| $(N +1)7!
MSE;,, = E{|zi,. (k) — 2, (k)[*} (30) n=t
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Fig. 4. Convergence process (same conditions as Fig. 3) for the four stages in terms of MSE.

where A = 0.855. In Fig. 7, performance on a typical fade event for

p1(k) (power of the output of the first stadegnd SNR= 30

Ny e . dB is shown. The forgetting factor i = 0.97. The real-time
N = Z |wn,z‘m| E{m(k)n; (k)} and power at the output of the array is shown with respect to the
n=l ) optimum solution computed assuming perfect knowledge of

i the propagation environment.

U
E

I
[

10
ST AT (k)
n=1

i
3!—‘

et VII. CONCLUSIONS

and the expectations are computed averaging over independeite have studied a new solution to blind beamforming for
computer runs. fourth-order white stationary sources. The algorithm is based

The tracking performance of the algorithm was tested f? @ generalization [1], [2] to space filtering of the idea
a simulation experiment and using a time-varying multipafifeSented in [3]. The method appears to converge rapidly to
channel. The Doppler frequency usually describes the secoffi OPtimum array response using an adaptive QR-based RLS
order statistics of channel variations. Doppler frequency #PProach. There is an increase in complexity with respect to
related through wavelength to vehicle motion. The model the extreme simplicity of a traditional gradient-based search
used in this case is based on the wide-sense stationary ll',h?-,the C.MA array, but.certamly Sflgnlfl.cant. compgtatlonal
correlated scattering (WSSUS) assumption [23], [24]. TH&VINGS with respect to high-resolution direction-finding algo-
complex baseband channel variations are generated as filtd IS. Mor]?%\ll_erdthe algorlr:hmtdogs noft ex.h'b't t:ﬁ typ|c_al
Gaussian processes fully specified by the scattering functi O« ems” ct)h I|<n appt;oacf.;as fo eam olrmlngkw e main-
In particular, each process has a frequency response e ga)ng all the known benetits (for example, unknown array
to the square root of the Doppler power density spectru eometry and unsupervised operation). In fact, the adaptive
We approximated the Doppler spectrum by rational ﬁlterea.gorithm has the property of being globally convergent and
processes. The filters are described by their 3-dB bandwi tij]fﬁciently fast to track channel variations caused by moving
which is célled the normalized Doppler frequency. Figs. 6 anHamsmitters, proving that the use of higher order statistics does

7 show tracking performance of the algorithm for mobiles 3The power for thei,,th transmitter at thenth stage can be estimated

transme‘g/J s):\o thz\t thevr‘n.axmﬁlmI Dopple(; fre%ku('ancy (qefm%ging (4] pi. (k) = Iﬁ)f;’j)H (I (I fo)*(k)zbgf)H(k))]
as fp =V/ ; where V' is vehicle speed and is carrier hi (K)ai (k)% where ki, (k) = [h'(ll,gm(k)' h.(;,,?m(k),---.
wavelength) multiplied with the sampling peri@d is fp7, =

(1) T (m) ; . ! .
, ) . h,(‘im(k)] and h;,;”(k) is the 4,1 element of the time-varying
0.0001 (F|g' 6) andfl?TS = 0.0006 (Flg: 7)' The e.VOh'.'t'on of propagation matridd 1 (k) at time stepk defined exactly agf,,, for m =1
the OSNIR for the first three stages is shown in Fig. 6 foriathe time-invariant case.
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Fig. 5. Comparison with the CMA array. The MSE in decibels is relative to the first stage.

not necessarily imply slow convergence and, hence, extremegtes the gradiehbf the vectory and we choose wery large

large sample size. step sizepu.
However, we have translated the maximization procedure
APPENDIX for W(s ("')) over 5™ into a maximization for a certain

Tm) _ Tm)
A. The Super-Exponential Algorithm and Its Convergence ¥a <m>( .. ) overw; " where

The iterative procedure [see (8) and (9)] applied to the
vector §; ~maintains the index of the tap with largest
magnitude which was called in [3] théeading tap (for
details, see [3, Section Ill]). It is globally convergent téhd we have used™ = H,,i\™.

8(7”) for any response VeCtngm (for a proof see [3]) Let us assume thats(m)E is an extremum for

v (m( Y = w(H,w™) = w(E)

An important aspect is the global convergence of thE(s (m)), that is, (O¥(s <’">)/a~<’">)| e = 0.
algorithm in theﬁ; ™) domain to the same solution of the, o then obviously true  that ﬁj(rn)E " such that
algorithm in thes(m) domain: this may not be generally (rn)E A ~(m)E s also an extremum fowa, (i)

guaranteed. (m) (m)
First, observe that the procedure [see (8) and (9)] Isbgcause(ay?ﬁ,z. ( 2)/0w; g, = ™E = 0.
gradient-based search to solve the maximization problem  The converse may not be trug. That is, if we assume that

—(m)r

. is an extremum fowg, (w; ), it may not be true
max¥(5{") (B1) that 3" = fI,,f(m)E is an extremum fo(3{™). In

20m) w;

T fact, we may haveow(H mw<’">)/a (m))| o _HE = =0

subject to the constra|rﬂs(m)||2 = 1. In fact, the two steps if (9¥(s <’">)/as<’">)| Al # 0 belongs to the

n (8) and (9) are e alent to the gradient-based iteration
in (8) ©) quiv gradi ! I kernel of H,,, which |s orthogonal to the subspace spanned

(™) by H.,,,, which means thaﬁ;_SZ?')” can be far from the desired
55:’) = 57(::) W (32) solution.

4The derivative by a complex variable = w, + ju; is (0/0u) =

(0/0ur)+ j(@/Ou;), whereu, = Real[u] andu; = Imag[u]. Moreover,

with @(3™) = 5 s (k)2s,, (k)2 (9f(v)/dv) indi-  we also havdd/ou”) = (0/0u,) — (8] du,).
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First Stage

/
” ("W*H‘lw ki

A
v 7 \LJV w !

OSNIR(dB)

Third Stage

Second Stage
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Fig. 6. Performance of the signal-to-noise-plus-interference ratio for the first three stages.

—(m)r

We investigate this last important issue. By the chain rule ;""" is an extremum for Yy (w;,), that
we havé s, it (OH @) 0B)| 0y mr = O
W (H o)) o
(m) then (8&(5("’))/83‘5’") ~ 0. Since
dw zm,n m _(m>F*H _(W>E
B Z ](m) ow (3 (Z’)) |(o®(s ("’))/8 (m)|| is continuous with respect tm(m)
! Os (m)k R S Y and hi";) then we only need to require that for a sufﬂmently
. " oo small A > 0 it is satisfied
or in vector form
~(rn) ("l) - - H - - H
U (H ;") _ " (5" (33 HH,,,(HmHm)THm - IUmH <A (35)
aﬁ;g"” 95 5’") S F

Now multiply both sides of (33) by,..(H.,H.)" to obtain o guarantee thaf|(9®(3™)/095™)|| is arbitrarily small
T 8!7( D Em)) which implies that there exist an extremLﬁffn’)E such that

o (Hop H ) Py ||§§:%)F - S*EZ")E)H is arbitrarily small. In other words the
_(m) m extremum fog, (w;,,) is arbitrarily close to the extremum
~ Iy (s, ) for ¥(s ("')) if there exists a sufficiently small\ such that
” ag(’"> s —H, w (35) is verified.
a!p( (rn))
T os Z(m) s _H ) (34) B, Improving the Numerical Stability of the Algorithm

. oy The structure of (26) reveals its similarity with a standard
because H,,,(H,,H,,)'H,, ~ Iy, the U, x U, solution of a multichannel recursive least squares estimation

identity matrix. It is then evident from (34) that(for the ¢:th channel), when thelesired procesq[10]) is

5Observe that for complex random variables= (1/2)(&, — jé;) where substituted by the proces, (k). From the dgrivation, it
¢ = Real[€] and¢; = Imag[¢] are two real random variables. clearly follows that at eaclk + 1 stage we wish to solve
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Fig. 7. Tracking performances of the QR approach. The channel is varying and the product maximum Doppler frequency-sample period is equal to
0.0006. The forgetting factor is equal to 0.97. The solid curve is the trace of the power for the first-stage output using the adaptive algorithm, and
the dashed curve is the optimum solution variation.

the problem This equivalence can be seen by forming the normal equations
_(m) (m) for both problems and comparing them. The advantage is that
{ Y (k) }ﬂ]‘ { AZ™ (k) }

min (36) the solution minimizer of (36) is simply the solution of a

@™ g™ (k+1) (m)(/f—ir 1) triangular system ([19]). This avoids the covariance matrix
) inversion and improves the performance of the recursion, when
with [T = BF™Q),5™(2),---, 5™ (k)], ill-conditioned data matrices are available. To find the matrix
Z(E) = (1), 5™@), -, 2" (k)T. The normal @, an efficient procedure can be adopted: a set of Givens
equationsdefine the desired minimizer as rotations can be used to annihilate the lower triangular part
()T (m) (m) of the matrixY(m)(kJr 1). The update is performed on the
Y (k+1DY " (k + L)w; change in the parametest™ (k) as dw.™ (k) = o™ (k +
_ymT (k + 1)Z(m)(k +1). 1) — ~§:)( ) ([19]). The algorithm consists of the following
e steps.
Suppose that a matrik (k) is known such that 1) Computation of the prediction errar™(k + 1) =
rym o _ [VR) A+ 1) — 5 (ke + Dyao™ (k).
Q (k) = 0 2) Form the matrix
with @ orthogonal andV' (k) being upper triangular matrix, )\TV(k) 0
then the problem stated in (36) is equivalent to g™ (k+1) u(k4+1) |
. AV (k) (m) )\Z(m 3) Sweep the bottom part of this matrix using the Givens
min w
o || [k + DT 5 (k + 1 rotations.
" (37) 4) Solve the triangular systenV(k + 1)dw (m)(k) =
7 (ke +1).
where 5) Obtaind{™ (k + 1) = @™ (k) + di™ (k).
ng)(k) L . .
QTZS"")(IC) = [Zim ) The computational complexity of the algorithm is only mar-
s z ginally increased with respect to the standard multichannel
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RLS adaptive filter using the QR approach. The computatiofis] D. N. Godard, “Self-recovering equalization and carrier tracking in two
needed to update the proce?égf)(k) are in fact absent in the

standard square root RLS filter.
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