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Fast Adaptive Super-Exponential Multistage
Beamforming for Cellular Base-Station

Transceivers with Antenna Arrays
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Abstract—A new blind adaptive beamforming algorithm is
introduced. We show how cumulants of the received signals can
be used to obtain the weights of the beamformer that perform
blind extraction. The method is based on a spatial interpretation
of a deconvolution procedure known as the super-exponential
algorithm. The basic block processing algorithm is attractive
because it can be transformed in an efficient adaptive algorithm
which exhibits good tracking capability. To prove the effectiveness
of the idea, we show results for a typical mobile communications
scenario where several cochannel inteferers corrupt the signals
of interest.

Index Terms—Array signal processing, higher order statistics,
interference suppression, land mobile radio cellular systems.

I. INTRODUCTION

T HE USE OF antenna arrays in a communication system
can theoretically improve performance in terms of ca-

pacity. Particularly, a multielement antenna receiver at the
base station of a cellular communication system is able to
compensate signal degradations in the mobile-to-base link
caused by cochannel interference which is known to be the
most important factor limiting the number of users that a
system can handle. The traditional beamforming approach
requires the knowledge of a “look” direction (the direction
of arrival of the signal of interest) or the waveform of the
signal of interest itself which is obviously not available in
the cellular environment. Several alternative solutions have
been proposed to solve the problem. The application of high-
resolution array processing methods is not possible due to
the extremely high number of wavefronts impinging over
the array: the model is not identifiable. However, the ap-
plication of subspace methods was proposed in [9], where
the propagation model was considerably simplified assuming
a local scattering mechanism. Blind adaptive beamforming
methods appear to be more successful because no knowledge
about array configuration, look direction, or desired signal is
required. The most popular approach to blind beamforming is
the constant modulus algorithm (CMA) array [12], [13], which
represents the extension of the Godard blind equalization
idea [16] to space filtering. The CMA method, which is
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basically very simple to implement, appeared to suffer from
two main disadvantages: misconvergence and slow adaption
rate. The application of a class of algorithms that exploit
second-order cyclostationary properties of the received signals
to separate the signal of interest from interferers was first
presented in [17] motivated by the fact that many signals
in communications are cyclostationary [4]. It is important
also to mention the recent contribution of [18], where a
method based on a gradient-based minimization of a new
cost function was presented. The basic idea of that work is
to exploit the property of cyclostationary signals to generate
spectral lines when they pass through certain nonlinearities.
Cumulant-based methods were presented in [6] to solve the
blind beamforming problem, but no attempt was made to
derive real-time adaptive algorithms. In [7], some cumulant-
based methods were also introduced to show the advantages
consequent to the use of higher order statistics. The method
proposed in this work is based on the same idea introduced
in [1] and [2], where the super-exponential approach [3] was
generalized to the multivariate case. Here, we describe the
application of the method to the space-only case and present
a multistage implementation based on the architecture of [14].
The advantages of the proposed method are in the following
facts.

• The approach is blind which allows the use of arbi-
trary array geometry and applicability in any propagation
environment.

• It does not exhibit the typical problems of blind ap-
proaches to beamforming, in fact, it has the property of
being globally convergent.

• The adaptive algorithm is sufficiently fast to track channel
variations caused by moving transmitters, while at the
same time being highly attractive from the computational
point of view, proving that the use of higher order
statistics does not necessarily imply slow convergence
and, hence, extremely large sample size.

The paper is organized as follows. In Section II, we describe
the discrete-time model for the communication system under
analysis. In Section III, we describe the beamforming archi-
tecture, while the basic separating criterion to extract one of
the signals is justified in Section IV. In Section V, a fully
adaptive implementation is proposed, while in Section VI the
results of some simulations for AMPS [21], [22], the current
cellular system are shown.
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Fig. 1. Block diagram of the receiver.

II. SYSTEM MODEL

We assume mobile transmitters communicating with a
base station with a -element antenna, with A block
diagram of the receiver is depicted in Fig. 1. The complex
baseband-modulated signal transmitted by theth transmitter
is We use the notation to denote a continuous time
waveform, while we will denote as the discrete-time signal
obtained by sampling at equispaced instants. Due to radio
frequency (RF) multipath propagation (we will consider only
the short-term fading which obeys a Rayleigh distribution), the
signal received at theth sensor of the array can be modeled as

(1)

where is the number of paths relative to the scattering
model of the th transmitter, is a Rayleigh-distributed
random variable, is uniformly distributed over ,

is the unknown gain and phase response of theth
sensor in the angle of arrival , and is the noise at
the th sensor. It is important to observe that the application
of the algorithm described in the following is not limited to
any array configuration, and it can be applied also when the

narrow-band assumption does not hold. Sampling at rate,
we can compact this expression as

(2)

where is the -sampled response of the array combined
with the channel of theth transmitted signal as seen at the
th sensor of the antenna array.1

III. D ESCRIPTION OF THEMULTISTAGE ARCHITECTURE

The concept of multistage separation is similar to the idea
described in [14]. In this work, we use a new procedure to

1Observe that a beamforming method based on a high-resolution direction-
finding approach requiresK � �U

l=1
Nl sensors according to the model (1).

An accurate knowledge of the array geometry and the ability to resolve the
wavefronts are also necessary. In [9], a reduced number of dominant paths
was considered based on some geometrical assumptions. The blind approach
overcomes the multipath modeling problem and requires only fewer sources
(interferers) than sensors (motivated by a fundamental multivariable system
theory limit). This assumption appears very reasonable since generally the
frequency reuse planning of a cellular system is such that at a certain given
time a small number of cochannel interferers has high enough power to
degrade quality of service.
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extract signals at every stage and show how, as a byproduct
of the super-exponential method, we can eliminate the LMS
search for the canceller weights of [14]. At eachth stage,
we have to separate one of the signals (the th signal,
where using a -element spatial filter (observe
that and ). Generally, the permutation
uncertainty inherent to the blind separation problem [8] causes
the index to be unknowna priori. We use ano-noisemodel
for the derivation of the algorithm. Define

for and as inputs,
weights, and outputs of the th (beamformer) stage, respec-
tively. Every stage has to solve a separation problem with a

mixing matrix, by extracting one of the sources. Then
the contribution of the extracted signal to the array input is
subtracted and a new separation problem with sources
is solved.

The output of the beamformer at theth stage is

for , where is the th
weight corresponding to the th (stage) spatial filter designed
to separate the source. The overall input/output relation of
the system including channel effects, array response, and space
filter at the th stage, but not including the additive noise is

, where

for (observe that ) or in a vector
form2

(3)

where and are defined as

The desired response (that is the response that

separates the th source) can be expressed as
, where

It is possible to solve the problem of finding the beamformer
that approximates the desired response solving the

minimization problem

(4)

The solution of (4) is

(5)

2MMMH andvvvH ; MMMT andvvvT ; andMMM� andvvv� denote complex conjugation
transpose, transpose, and complex conjugation for the matrixMMM and vector
vvv; respectively. Thek; l element of the matrixMMM and themth element of the
vectorvvv are[MMM ]k;l and[vvv]m, respectively. Complex conjugation for a scalar

a is identified bya�: kvvvk = �Mi=1 j[vvv]ij2 is the 2-norm of the complex
M vector.

and , where we have used the
symbol to identify the inversion of a rank-deficient square
matrix by, for example, singular value decomposition (SVD).
Observe that this solution is exactly the optimum Wiener filter
in presence of noise (up to a constant). In fact, the Wiener
solution obtained minimizing the MSE is

(6)

Expression (6) is equivalent to (5) given that

with

and

[ is the additive noise at the th stage, which was
neglected in the derivation of (5) so that ].

A. Cumulants of Stationary Processes

If is a collection of random variables
and is a collection of deterministic
variables, then the th-order cumulant is defined as theth
coefficient in the Mac–Laurin series expansion of the cumulant
generating function

(7)

Alternatively [11], one can define th-order cumulants as
combinations of joint moments of orders up to Particularly
for zero-mean random variables and

where is an eventual complex conjugation for In
this work the random variables are samples collected at time

from the sensor outputs of an array. These collections
of samples are modeled as stationary random processes. The
fundamental properties of cumulants of random zero-mean
stationary processes are as follows.

• LIN: .
• STATIND: if the samples of a process can be divided into

two (or more) statistically independent subsets, then their
joint cumulants are zero.

• GAUSS: if the samples of a process are jointly Gaussian,
then their joint cumulant is zero for greater than
two.

When the samples are well separated in time and if the cumu-
lants are absolutely summable, then the theoretical cumulants
are consistently estimated from a data record ofsamples and
ensemble averages can be approximated by empirical averages,
simply exploiting the cumulant to moment equations.

The fundamental assumption necessary to develop the al-
gorithm is as follows.
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AS1: The complex zero-mean discrete-time processes
for are constituted by random

variables identically non-Gaussian distributed. In addition, the
cumulants of satisfy:

1) only for ;
2) only for

IV. EXTRACTION OF THE SIGNAL ( TH STAGE)

In this section, we will show how to obtain an estimate of
the optimal solution for the weights of the beamformer and
at the same time the propagation vector for theth signal.
The following two-step iterative procedure defines a class of
algorithms for different values of and [1], [3]:

(8)

(9)

Choosing gives a solution in terms of fourth-
and second-order cumulants. As observed in [3], (8) and (9)
operated on converges at asuper-exponential rateto the

desired solution Since obviously is not available
(because is not known), we derive a procedure in terms of

If we define

as the vector obtained by , we can state
the least squares minimization problem

(10)

with the solution

(11)

To obtain normalization (9), the second step is

(12)

The algorithm in the domain [see (11) and (12)]projected
back in the domain becomes

(13)

whose point of convergence easily obtained (see [3]) is

This expression is coincident with the solution (5) up to a
gain factor. In Appendix A, we further explain the super-
exponential algorithm and the related convergence issues.

The procedure [see (11) and (12)] can be expressed in terms
of the cumulants of the outputs of the sensors. We exploit

the above assumptions and the properties of the cumulants of
linear stationary processes (see [11]) so that we can write

(14)

due to

otherwise.

To derive the second key expression related to (11), let us
consider

(15)

and

(16)

where the last equality follows from

otherwise.

So we can write

(17)

Expressions (14) and (17) can be substituted in (11), and the
following iterative algorithm is obtained:

(18)

(19)

where the generic element of the matrix is
given by

(20)
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and the th element of the vector of fourth-order
cumulants is given by

(21)

Now if we take into account the additive noise ,
we have

(22)

and because

(23)

In fact, is a Gaussian process and its cumulants
of an order greater than two vanish. So if the iterative
algorithm converges close to the desired response so that

, then we have

which is exactly the optimal Wiener solution given in (6).

V. ADAPTIVE IMPLEMENTATION

In this section, we derive an adaptive algorithm for on-
line computation of the spatial filter weights. The derivation is
based on the theory of recursive least squares (RLS). Sample
statistics-based estimation of the cumulants of interest are

(24)

(25)

We have neglected stage indexes for for simplicity
and have indicated the estimated cumulant as At the
end of the convergence process, the following equation must
be satisfied:

(26)

TABLE I
THE PROPOSEDALGORITHM

The estimate of based on samples is

, and their recursive estimation
can be obtained as

(27)

(28)

where

is the forgetting factor. The process is the

recursive estimation of Expression (28) can
be justified by considering the estimation of fourth-order
cumulants, based on sample averages given by (25) and the
statistical assumptions on the process Due to the power
normalization

Since we need the
inverse of the correlation matrix at every step, we can use
the matrix inverse identify and write the equation given at the

bottom of the next page, with The
Kalman gain is given by and
the recursive updating of the deconvolution filter is calculated
as

(29)
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Fig. 2. Discrete-time model of the filtering section (K sensors up to themth stage).

The initialization can be made by estimating cumulants using
sample averages on a small number of data samples; the nor-
malization required by the general method can be implemented
by scaling the value of the weights obtained at each iteration.

Since (where stands for “con-

verges in the mean-square sense”) and as

(for some scalar ), it follows as a byproduct of the
iterative-recursive procedure that

That is, the vector contains the information rela-
tive to the th-directional vector up to a scalar As a
consequence, the stage update recursion is given by

The algorithm can be summarized as in Table I (see also
Fig. 2). The lag can be selected arbitrarily, depending on the
initialization strategy. It is well known that the updating of the
matrix can become numerically unstable. A number

of solutions can be employed to avoid this problem. We
have studied and simulated a square root (QR decomposition)
approach similar to the method proposed in [10], [19], and
[20]. The algorithm is described in Appendix B.

VI. SIMULATIONS

As an example of application of the algorithm, we simulated
the AMPS cellular system environment [21], [22]. A base
station equipped with a element uniform linear array
with half-wavelength element spacing is considered. There are

signals impinging over the array with equal power
to represent a rather pessimistic interference scenario. The
number of rays in (1) to generate the fading channels is

, while the transmitters’ angles of
arrival in the case of static channel are clustered for each path
around 60, 10 , 25 , and 30, respectively, as described in
[9] with The signals are assumed to be received
with equal strength. Carrier separation is 0 Hz for the RF-
modulated signals. The sampling frequency is 80 KHz. White
Gaussian noise afflicts all the signals impinging over the array
with equal power.



MARTONE: MULTISTAGE BEAMFORMING FOR CELLULAR BASE-STATION TRANSCEIVERS 1023

(a)

(b)

(c)

Fig. 3. Beam pattern of the first three stages: DOA’s are�1 = 60
�; �2 = 10

�; �3 = �25
�; and �4 = 30

�: (a) The first stage captures�4
and forms nulls in the directions�2; �1; and �3: (b) The second stage captures�2 and forms nulls in the directions�3 and �1: (c) The third stage
captures�3 and forms a null in the direction�1:

The fading channel is static in a first set of simulation exper-
iments and it is generated randomly at every run according to
the Rayleigh distribution. In Fig. 3, the beam pattern is shown
for the four stages after 1000 samples, with , with
a signal-to-noise ratio (SNR) dB. In Fig. 4, the mean-
squared error (MSE) of the four sources MSEMSE MSE
and MSE is reported versus the number of samples processed
where

MSE (30)

and the expectation is calculated by averaging over 100
independent runs. The weight updating algorithm is the QR
recursive algorithm described in the Appendix with

Fig. 5 shows a comparison in terms of MSE of the first
three captured sources (among the four of interest) with the
multistage CMA array of [14]. The value of is 0.97.

The output-signal-to-interference-plus-noise ratio is defined
as

OSNIR
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Fig. 4. Convergence process (same conditions as Fig. 3) for the four stages in terms of MSE.

where

and

and the expectations are computed averaging over independent
computer runs.

The tracking performance of the algorithm was tested in
a simulation experiment and using a time-varying multipath
channel. The Doppler frequency usually describes the second-
order statistics of channel variations. Doppler frequency is
related through wavelength to vehicle motion. The model
used in this case is based on the wide-sense stationary un-
correlated scattering (WSSUS) assumption [23], [24]. The
complex baseband channel variations are generated as filtered
Gaussian processes fully specified by the scattering function.
In particular, each process has a frequency response equal
to the square root of the Doppler power density spectrum.
We approximated the Doppler spectrum by rational filtered
processes. The filters are described by their 3-dB bandwidth
which is called the normalized Doppler frequency. Figs. 6 and
7 show tracking performance of the algorithm for mobiles
transmitting so that the maximum Doppler frequency (defined
as where is vehicle speed and is carrier
wavelength) multiplied with the sampling period is

(Fig. 6) and (Fig. 7). The evolution of
the OSNIR for the first three stages is shown in Fig. 6 for a

In Fig. 7, performance on a typical fade event for
(power of the output of the first stage)3 and SNR

dB is shown. The forgetting factor is The real-time
power at the output of the array is shown with respect to the
optimum solution computed assuming perfect knowledge of
the propagation environment.

VII. CONCLUSIONS

We have studied a new solution to blind beamforming for
fourth-order white stationary sources. The algorithm is based
on a generalization [1], [2] to space filtering of the idea
presented in [3]. The method appears to converge rapidly to
the optimum array response using an adaptive QR-based RLS
approach. There is an increase in complexity with respect to
the extreme simplicity of a traditional gradient-based search
like the CMA array, but certainly significant computational
savings with respect to high-resolution direction-finding algo-
rithms. Moreover the algorithm does not exhibit the typical
problems of blind approaches to beamforming while main-
taining all the known benefits (for example, unknown array
geometry and unsupervised operation). In fact, the adaptive
algorithm has the property of being globally convergent and
sufficiently fast to track channel variations caused by moving
transmitters, proving that the use of higher order statistics does

3The power for theimth transmitter at themth stage can be estimated

using [14] pi (k) = j~www
(m)
i (k)[�m�1

l=1 (IIIK� DDD
(l)
i (k)~www

(l)
i (k))]

hhhi (k)xi (k)j2, where hhhi (k) = [h
(1)
1;i (k); h

(1)
2;i (k); � � � ;

h
(1)
K;i (k)]T and h

(m)
i;l

(k) is the i; l element of the time-varying
propagation matrixHHH1(k) at time stepk defined exactly asHHHm for m = 1
in the time-invariant case.
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Fig. 5. Comparison with the CMA array. The MSE in decibels is relative to the first stage.

not necessarily imply slow convergence and, hence, extremely
large sample size.

APPENDIX

A. The Super-Exponential Algorithm and Its Convergence

The iterative procedure [see (8) and (9)] applied to the
vector maintains the index of the tap with largest
magnitude which was called in [3] theleading tap (for
details, see [3, Section III]). It is globally convergent to

for any response vector (for a proof, see [3]).
An important aspect is the global convergence of the
algorithm in the domain to the same solution of the

algorithm in the domain: this may not be generally
guaranteed.

First, observe that the procedure [see (8) and (9)] is a
gradient-based search to solve the maximization problem

(31)

subject to the constraint In fact, the two steps
in (8) and (9) are equivalent to the gradient-based iteration

(32)

with indi-

cates the gradient4 of the vector and we choose avery large
step size

However, we have translated the maximization procedure
for over into a maximization for a certain

over where

and we have used

Let us assume that is an extremum for

, that is,

It is then obviously true that such that

is also an extremum for

because

The converse may not be true. That is, if we assume that
is an extremum for , it may not be true

that is an extremum for In

fact, we may have

if belongs to the

kernel of , which is orthogonal to the subspace spanned

by , which means that can be far from the desired
solution.

4The derivative by a complex variableu = ur + jui is (@=@u) =
(@=@ur) + j(@=@ui), whereur = Real[u] andui = Imag[u]: Moreover,
we also have(@=@u�) = (@=@ur)� j(@=@ui):
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Fig. 6. Performance of the signal-to-noise-plus-interference ratio for the first three stages.

We investigate this last important issue. By the chain rule
we have5

or in vector form

(33)

Now multiply both sides of (33) by to obtain

(34)

because the
identity matrix. It is then evident from (34) that

5Observe that for complex random variables� = (1=2)(�r � j�i) where
�r = Real[�] and�i = Imag[�] are two real random variables.

if is an extremum for , that

is, if

then Since

is continuous with respect to

and , then we only need to require that for a sufficiently
small it is satisfied

(35)

to guarantee that is arbitrarily small

which implies that there exist an extremum such that

is arbitrarily small. In other words the
extremum for is arbitrarily close to the extremum

for if there exists a sufficiently small such that
(35) is verified.

B. Improving the Numerical Stability of the Algorithm

The structure of (26) reveals its similarity with a standard
solution of a multichannel recursive least squares estimation
(for the th channel), when thedesired process([10]) is
substituted by the process From the derivation, it
clearly follows that at each stage we wish to solve
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Fig. 7. Tracking performances of the QR approach. The channel is varying and the product maximum Doppler frequency-sample period is equal to
0.0006. The forgetting factor is equal to 0.97. The solid curve is the trace of the power for the first-stage output using the adaptive algorithm, and
the dashed curve is the optimum solution variation.

the problem

(36)

with
The normal

equationsdefine the desired minimizer as

Suppose that a matrix is known such that

with orthogonal and being upper triangular matrix,
then the problem stated in (36) is equivalent to

(37)

where

This equivalence can be seen by forming the normal equations
for both problems and comparing them. The advantage is that
the solution minimizer of (36) is simply the solution of a
triangular system ([19]). This avoids the covariance matrix
inversion and improves the performance of the recursion, when
ill-conditioned data matrices are available. To find the matrix

an efficient procedure can be adopted: a set of Givens
rotations can be used to annihilate the lower triangular part

of the matrix The update is performed on the
change in the parameter as

([19]). The algorithm consists of the following
steps.

1) Computation of the prediction error
.

2) Form the matrix

3) Sweep the bottom part of this matrix using the Givens
rotations.

4) Solve the triangular system

.

5) Obtain

The computational complexity of the algorithm is only mar-
ginally increased with respect to the standard multichannel
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RLS adaptive filter using the QR approach. The computations
needed to update the process are in fact absent in the
standard square root RLS filter.
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